
INTRA: Interaction Relationship-aware
Weakly Supervised Affordance Grounding

Ji Ha Jang1∗, Hoigi Seo1∗, and Se Young Chun1,2†

1Dept. of Electrical and Computer Engineering, 2INMC & IPAI
Seoul National University, Republic of Korea

{jeeit17, seohoiki3215, sychun}@snu.ac.kr

Abstract. Affordance denotes the potential interactions inherent in ob-
jects. The perception of affordance can enable intelligent agents to nav-
igate and interact with new environments efficiently. Weakly supervised
affordance grounding teaches agents the concept of affordance without
costly pixel-level annotations, but with exocentric images. Although re-
cent advances in weakly supervised affordance grounding yielded promis-
ing results, there remain challenges including the requirement for paired
exocentric and egocentric image dataset, and the complexity in ground-
ing diverse affordances for a single object. To address them, we propose
INTeraction Relationship-aware weakly supervised Affordance ground-
ing (INTRA). Unlike prior arts, INTRA recasts this problem as rep-
resentation learning to identify unique features of interactions through
contrastive learning with exocentric images only, eliminating the need
for paired datasets. Moreover, we leverage vision-language model em-
beddings for performing affordance grounding flexibly with any text,
designing text-conditioned affordance map generation to reflect interac-
tion relationship for contrastive learning and enhancing robustness with
our text synonym augmentation. Our method outperformed prior arts on
diverse datasets such as AGD20K, IIT-AFF, CAD and UMD. Addition-
ally, experimental results demonstrate that our method has remarkable
domain scalability for synthesized images / illustrations and is capable
of performing affordance grounding for novel interactions and objects.
Project page: https://jeeit17.github.io/INTRA

Keywords: Affordance grounding · Weak supervision · Exocentric im-
age · Contrastive learning · Interaction relation

1 Introduction

Affordance [20] refers to the perceived possible interactions based on an object’s
inherent or recognized properties (e.g., the rim of a wine glass affords sipping
while stem of it affords holding). Humans can identify affordances of objects
and interact with proper parts despite the diversity in their physical attributes.
* Authors contributed equally. † Corresponding author.
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Fig. 1: Prior works on weakly-supervised affordance grounding like LOCATE [29] of-
ten failed to ground different affordances for the same object. However, our proposed
INTRA yielded finer and more accurate grounding results for them that are closer to
the ground truth (GT) by considering interaction relationship among them.

This ability can be acquired through individual learning, by directly interacting
with objects, and observational learning [8], by observing others’ interactions.
The sense of affordance enables effective interaction in new environments or with
novel objects, without step-by-step instructions [66]. Affordance plays an essen-
tial role across numerous applications involving intelligent agents, enabling them
to provide flexible and timely responses in complex, dynamic environments [5].
These applications include task planning, robot grasping, manipulation, scene
understanding and action prediction [2, 6, 7, 19,58,74].

Affordance grounding is the task to teach intelligent systems how to locate
possible action regions in objects for a certain interaction. While fully super-
vised learning [4, 21, 47, 69] is the most straightforward approach, its reliance
on costly annotations may limit its applicability across diverse contexts. An-
other approach is weakly supervised learning, similar to human’s observational
learning [8], that does not require GT, but weak labels. In this setting, exo-
centric images illustrating human-object interactions, along with corresponding
egocentric images depicting the objects, are provided during training. During
inference, intelligent systems perform affordance grounding on the egocentric
images, identifying object parts relevant to the given interactions. Recent ad-
vances in weakly supervised affordance grounding [29, 35, 36, 46] proposed to
use pairs of exocentric and egocentric images, yielding great performance. The
deep neural networks learn affordances by pulling features from exocentric and
egocentric images closer, aiming to focus on object parts related to interactions.

However, weakly supervised affordance grounding remains challenging. Firstly,
the requirement for current weak labels with pairs of exocentric and egocentric
images is still strong. Note that human observational learning does not usu-
ally require egocentric images. Secondly, a complex relationship between inter-
actions exists, which has not been adequately addressed in prior works. Many
instances in object-interaction relationships exhibit intricate many-to-many as-
sociations, occasionally with one entailing another. For example, some distinct
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interactions represent the same affordance regions (e.g., ‘wash’ and ‘brush with’
a tooth brush), and there are closely related interactions that always come to-
gether (e.g., ‘sip’ usually includes ‘hold’. ‘ride’ usually includes ‘sit on’). This
complexity poses challenges in extracting interaction-relevant features based on
image-level affordance labels, introducing biases towards objects in affordance
grounding as illustrated in Fig. 1 (LOCATE [29] often yielded similar affordance
grounding with different interactions for the same object).

Here, we propose a novel weakly supervised affordance grounding method,
INTRA (INTeraction Relationship-aware weakly supervised Affordance ground-
ing) to address these unexplored challenges. While previous studies [35,46] solved
the weak supervision problem as supervised learning by pulling object features
of exocentric and egocentric images closer and LOCATE [29] enhanced this ap-
proach by generating more localized pseudo labels based on prior information for
exocentric images for supervised learning (i.e., containing human, object part,
and background), our INTRA framework recasts the weak supervision problem
as representation learning. This novel reformulation allows us to use weaker la-
bels (i.e., exocentric images only) for training so that the requirement to use
pairs of exocentric / egocentric images is now alleviated. Moreover, unlike prior
works, our INTRA method actively exploits large language model (LLM) as well
as the text encoder of the vision-language model (VLM) to leverage linguistic in-
formation and existing textual knowledge on affordances, which further enhances
our interaction relationship-guided contrastive learning. This novel scheme also
allows excellent scalability for unseen objects across diverse domains as well as
zero-shot inference for novel interactions, which was not possible in prior arts.
In summary, our main contributions are three-fold as follows:

– We propose a novel approach for weakly supervised affordance grounding
by recasting the problem as representation learning and by leveraging VLM,
leading to relaxing the need for paired training datasets for more weak su-
pervision and enhancing scalability across domains for unseen objects.

– We proposed INTRA, a novel method that consists of text synonym aug-
mentation and text-conditioned affordance map generation module along
with interaction relationship-guided contrastive learning, so that inference
on unseen interactions is possible.

– Our INTRA outperforms the prior arts in weakly supervised affordance
grounding on diverse datasets such as AGD20K, IIT-AFF, CAD and UMD,
demonstrating both qualitative and quantitative excellence (see Fig. 1).

2 Related Works

2.1 Affordance Grounding

Supervised affordance grounding. Supervised affordance grounding meth-
ods [12,17] analyze interaction videos / images to predict affordance regions on
an object, trained with pixel-level GT masks / heat maps. Though successful in
localizing fine-grained affordance regions through supervised learning, they are
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limited by the costly GT mask annotation process and their limited generaliz-
ability to unseen objects. Furthermore, they require paired demonstration videos
and target object images, making real-world application challenging.

Weakly supervised affordance grounding. Weakly supervised affordance
grounding methods [15,23,27,29,35–37,46,52] offer the advantage of not requir-
ing GT, but requiring weak labels such as exocentric images with interaction
text labels. Prior works [29, 35, 36, 46] mainly align interaction-relevant object
features from both egocentric and exocentric images without considering the
intrinsic properties of interactions. The framework in [46] predicts object fea-
tures engaged in interactions by analyzing human-object interaction videos. The
works of [35, 36] preserve the correlation of affordance features from exocentric
and egocentric images to learn affordances. The work of [29] enhances object
feature extraction by adopting DINO-ViT [10] based Class Activation Maps
(CAM) [76] and k-means clustering [39] for more explicit guidance. However, fo-
cusing solely on object features may introduce biases towards object, hindering
the inference of multiple affordances for a single object. Our INTRA addresses
this issue by considering the complex relationships between interactions using
interaction relationship-guided contrastive loss, while ensuring the network re-
mains attentive to the objects using object-variance mitigation loss.

2.2 Foundation Models for Affordance Grounding

Self-supervised transformer. Self-supervised transformers, extensively trained
on large-scale datasets and scalability, possess robust representation power. Pre-
vious works [29,59] have explored their potential in affordance grounding. DINO-
ViT [10], a vision transformer foundation model trained in a self-supervised man-
ner, can identify both high-semantics such as overall information of the image
and low-semantics such as details regarding specific object parts. This versa-
tility has led advancements in various tasks, including classification, semantic
segmentation [4, 28] and semantic correspondence [73]. LOCATE [29] leverages
DINO-ViT to extract low-semantic information, resulting in performance im-
provements in affordance grounding. Our INTRA employed DINOv2 [51] as an
image encoder to extract information about objects and their constituent parts.

Vision-language model. The Vision-Language Model (VLM) is a class of
models jointly pretrained on visual and language data for various downstream
tasks [50, 63, 72]. VLM text encoders, trained through contrastive learning with
image-text pairs, capture representations in the joint space of the images and
text [30–32, 57]. These text encoders, incorporating visual information, have
demonstrated excellent performance across multiple tasks. ALBEF [32] notably
enhances vision and language representation learning by aligning image and
text features before fusing them. While supervised affordance grounding meth-
ods leveraging VLM text encoders [49] have been explored, their application in
weakly supervised affordance grounding remains underexplored. We propose a
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Fig. 2: Overall frameworks of (a) LOCATE [29] and (b) INTRA (Ours). LOCATE
takes paired exocentric and egocentric images to generate interaction-aware affordance
maps (CAMs) for predefined interactions and then selects an interaction-related CAM
by the given interaction label. In contrast, INTRA takes only exocentric images and
interaction labels to yield an affordance map through our affordance map generation
module. Training is done via interaction relationship-guided contrastive learning on
exocentric features from affordance maps. Note that all encoder parameters are frozen.

framework leveraging the text encoder of ALBEF to enable novel interactions,
diverging from prior arts limited to inferring predetermined sets of affordances.

Large language model. Understanding affordance relationships is crucial for
affordance grounding, as it enables extending and linking learned visual cues, and
reasoning about affordances for new objects, interactions, or situations. While
prior works like [22] leverage semantically similar object properties and [36]
utilize affordance feature correlation, none directly exploit these relationships.
We use these intricate relationships in affordance learning by adopting Large
Language Models (LLMs). LLMs have gained prominence in robotics due to
their profound natural language understanding, providing valuable priors about
interactions and their complex relationships. Previous works [3, 33, 61, 75] focus
on extracting action knowledge, deriving task-specific plans, and grounding them
in the physical world. LLMs have also been widely used in previous affordance
studies [41,62], demonstrating their exceptional understanding of interactions.

3 Method

Prior arts in weakly supervised affordance grounding [29, 35, 36, 46] typically
align object features of paired exocentric (interaction with object) and egocen-
tric (object only) images to learn interaction-related features. For example, as
illustrated in Fig. 2(a), LOCATE [29] generates CAMs (affordance maps) from
exocentric and egocentric images for a pre-determined interaction label, extracts
egocentric feature as well as exocentric object parts feature selected by PartS-
elect module (pseudo label), and then trains the model by optimizing cosine
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similarity to align (pull) egocentric and exocentric object parts features. In con-
trast, we propose an alternative approach, INTRA, whose overall framework is
illustrated in Fig. 2(b). Our text-conditioned affordance grounding framework
of INTRA leverages VLM text encoder in affordance map generation module
and employs text synonym augmentation to enhance robustness, as will be de-
scribed in Sec. 3.1. Then, INTRA learn affordance grounding via our interaction
relationship-guided contrastive learning, detailed in Sec. 3.2. The framework of
INTRA as depicted in Fig. 2(b) clearly suggests two advantages over prior arts
including LOCATE [29]: 1) it exploits exocentric images only and 2) INTRA
admits novel interactions outside the pre-defined interaction set.

3.1 Text-conditioned Affordance Grounding Framework

To utilize the semantic meanings inherent in interaction labels and enable flexible
inference on novel verbs, our text-conditioned affordance grounding framework
generates affordance maps by conditioning image features with text features via
our affordance map generation module where text and image features extracted
from separately pre-trained text and image encoders are fused. In specific, as
depicted in Fig. 2(b), deep features Fexo ∈ R(h×w)×d are obtained from the
input exocentric images using DINOv2 [51], where h and w represent the height
and width of the affordance map, and d refers to the dimension of the feature.
The text feature Ftext of the given interaction is obtained using the ALBEF text
encoder [32]. See the supplementary material for further details on the rationale
for employing DINOv2 and the ablation study on the text encoder.

Affordance map generation module. Before fusing text and image features,
the class token of Ftext passes through a single linear layer to align the sepa-
rately pre-trained image and text embedding spaces and connect them, as shown
to be effective in previous works [34,77]. Subsequently, image features Fexo and
the class token of text features are concatenated and processed through a trans-
former encoder for conditioning. The image feature part of the resulting vector
is then projected using a multi-layered convolutional network and normalized
using min-max normalization to obtain the affordance map Maff ∈ Rh×w. This
affordance map represents the image regions in exocentric images most relevant
to interactions. During inference, Maff functions directly as an output heatmap,
indicating the image regions in egocentric images most relevant to interactions.

Text synonym augmentation. To enhance the robustness of text condition-
ing, we integrate text synonym augmentation into our interaction embeddings.
Initially, we generate ks synonyms for each interaction label using LLM. Sub-
sequently, any synonyms overlapping with other interaction labels are removed.
These synonyms are then randomly selected to substitue the text conditioning
interaction embedding, while the original interaction label is retained for inter-
action relationship-guided contrastive learning. This module enhances overall
performance by providing models with enriched interpretations of interactions.
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3.2 Interaction Relationship-guided Contrastive Learning

Our INTRA learns via interaction relationship-guided contrastive learning by
comparing exocentric image features across diverse interactions. Our contrastive
learning consists of two key components, 1) extracting exocentric image features
with affordance map and 2) designing loss for interaction relationship-guided
contrastive learning, that enable the grounding of multiple affordances on a
single object.

Exocentric image feature extraction with affordance map. As described
in Sec 3.1, a text-conditioned affordance map, Maff , is generated to represent
interaction-relevant image regions of exocentric images. Then, the exocentric
image features fexo corresponding to the affordance map are extracted as follows:

fexo = (1/hw)Σh
i=1Σ

w
j=1Fexo(i, j) · Maff (i, j) ∈ Rd. (1)

The resulting fexo is then projected and normalized to obtain the exocentric
image feature zexo using an MLP layer, which will be used for training. This
projection layer was also used in previous works [13,14,70], which have demon-
strated the necessity and efficiency of it.

Loss design for interaction relationship-guided contrastive learning.
Supervised contrastive learning [25] effectively derives good representations for
each class by focusing on common characteristics in positive pairs while disre-
garding those in negative pairs like other classes. However, in affordance ground-
ing tasks, treating all other interaction classes as negative pairs may be inade-
quate due to the complex relationship among interactions. To mitigate this issue,
we propose interaction relationship-guided contrastive loss, Linter. Furthermore,
considering the subtle meaning variations within single interaction classes de-
pending on the object and context, we also propose object-variance mitigation
loss, Lobj . Thus, the total loss for our INTRA is formulated as follows:

Ltotal = Linter + λobjLobj (2)

where λobj denotes the control parameter of Lobj .

Interaction relationship-guided contrastive loss. In affordance grounding,
treating all other interaction classes as negative pairs is inadequate due to the
intricate relationships between interactions. For example, ‘Wash’ and ‘Brush
with’ toothbrush or ‘Pour’ and ‘Seal’ bottle represent distinct interactions but act
on the same object parts. Manually finding these relationships is time-consuming
and impractical as the number of pairs grows quadratically with the number of
interaction (see the supplementary). Moreover, although linguistic relationships
like synonyms or co-occurrence were considered as substitutes, they are often
inadequate and degrade performance. For example, ‘Sip’ entails ‘Hold’, but they
act on different part of objects, and ‘Wash’ and ‘Cut with’ a knife have different
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Fig. 3: The overall scheme of interaction-relationship map (R) generation. LLM clas-
sifies all pairs of interactions in the dataset as positive or negative through chain of
thoughts. This process is based on reasoning if interactions occur on same object parts.

meanings, but they act on the same blade. To mitigate this, we leverage LLM
to determine if interaction pairs act on the same object part. Through Chain of
Thoughts (CoT), interaction pairs are categorized as positive or negative in three
steps as described in Fig. 3. In Step 1, LLM deduces five different objects where
both interactions could be performed. In Step 2, LLM identifies object parts
where these interactions could occur by considering five objects one by one,
not simultaneously. In Step 3, if the identified parts of the interaction pair are
the same, the pair is classified as positive; otherwise, negative. Positive pairs are
assigned 1 in the interaction-relationship map R, and negative pairs are assigned
0. We propose interaction-relationship guided contrastive loss by integrating R
into supervised contrastive learning as follows:

Linter =
2N∑
i=1

−1

2Nyi − 1

2N∑
j=1

R(yi,yj) · log
exp (ziexo · zjexo/τ)

2N∑
k=1

1i̸=k · exp (ziexo · zkexo/τ)
(3)

where i, j are sample indices, yi, yj are class labels, Nyi
is the number of sam-

ples in the batch labeled with yi, N is the total number of distinct samples in
the batch, zjexo is the exocentric image feature vector of each sample, τ is the
temperature, and R(yi,yj) is the value of (yi, yj) pair in interaction-relationship
map.

Object-variance mitigation loss. In the context of affordance, the interpre-
tation of the same interaction can vary significantly based on the object and
context. For instance, ‘Hold’ a baseball bat and a cup may seem similar since
both involve grasping an object. However, the former involves gripping the bat’s
slender part, while the latter entails holding the cup’s rounded, protruding part.
To address this variance within the same interaction category, we implemented
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an object-variance mitigation loss Lobj as follows:

2N∑
i=1

−1

2Noi − 1

2N∑
j=1

1oi=oj · log exp (ziexo · zjexo/τ)
2N∑
k=1

1i̸=k · exp (ziexo · zkexo/τ)
(4)

where oi, oj denote object class of i and j.

4 Experiments

4.1 Experimental Setting

Dataset and metrics. We conducted an evaluation of our method using the
Affordance Grounding Dataset (AGD20K) [36]. AGD20K comprises both exo-
centric and egocentric images, with 20,061 exocentric images and 3,755 egocen-
tric images labeled with 36 affordances. The dataset support evaluation under
two settings: 1) the ‘Seen’ setting, where the object categories of the training and
testing sets are identical, and 2) the ‘Unseen’ setting, where no objects overlap
between the training and test sets. Our approach only used exocentric images in
training for all experiments, while other approaches were trained using both ego-
centric and exocentric images. We employed three evaluation metrics commonly
employed in previous affordance grounding methodologies: 1) Kullback-Leibler
Divergence (KLD), 2) Similarity (SIM), 3) and Normalized Scanpath Saliency
(NSS). These metrics were utilized to quantify the similarity between the distri-
butions of ground truth heatmaps and predicted affordance grounding.

Implementation details. We employed DINOv2 as the image encoder and
ALBEF, fine-tuned with RefCOCO+, as the text encoder. ChatGPT-4 [1] served
as the LLM. Images were resized to 384×384, then cropped to 336×336. Training
utilized the Adam optimizer [26] with a learning rate of 2e-4 and a batch size of
256. The hyperparameter λobj was set to 4, and all experiments were conducted
on a single NVIDIA A100 GPU. More details are provided in the supplementary.

4.2 Comparison to State-of-the-art Methods

To comprehensively assess our method, we conduct quantitative and qualitative
comparisons with state-of-the-art weakly-supervised grounding methods, incor-
porating a user study. We further expand our experiments to include additional
datasets [45,48,60] for a comprehensive evaluation. Refer to the supplementary
materials for more details on the experimental settings.

Quantitative results. We evaluated previous works [18, 29, 35, 36, 40, 46, 53]
and our method based on the metrics mentioned above. Tab. 1 shows the quan-
titative comparison results of our method with prior arts. In both ‘Seen’ and
‘Unseen’ setting, our approach surpasses the baseline performances across all
three metrics: KLD, SIM, and NSS, thereby setting a new state-of-the-art.
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Table 1: Quantitative results of ours and other baselines [18, 29, 35, 36, 40, 46, 53] on
the AGD20K dataset. ↑ / ↓ indicates that higher / lower the metric is, the better the
model performs. INTRA outperformed all baselines, despite being trained only with
exocentric images, whereas other models incorporated both exocentric and egocentric
images during training.

Prior works Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Weakly Supervised
Object Localization

EIL [40] 1.931 0.285 0.522 2.167 0.227 0.330
SPA [53] 5.528 0.221 0.357 7.425 0.167 0.262
TS-CAM [18] 1.842 0.260 0.336 2.104 0.201 0.151

Weakly Supervised
Affordance Grounding

Exo+Ego

Hotspots [46] 1.773 0.278 0.615 1.994 0.237 0.557
Cross-view-AG [36] 1.538 0.334 0.927 1.787 0.285 0.829
Cross-view-AG+ [35] 1.489 0.342 0.981 1.765 0.279 0.882
LOCATE [29] 1.226 0.401 1.177 1.405 0.372 1.157

Exo INTRA (Ours) 1.199 0.407 1.239 1.365 0.375 1.209

Table 2: Quantitative results on the modified IIT-AFF, CAD, and UMD dataset for
our method and other baselines [29,35,36]. Models were trained in the ‘Seen’ setting of
AGD20K and tested on the datasets without additional training. INTRA outperformed
all baselines on all metrics across all datasets. * Objects with affordances that prior
works are unable to predict were eliminated from the datasets for fairness, wheares our
method can infer affordances on novel interactions.

IIT-AFF* [48] CAD* [60] UMD* [45]
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Cross-View-AG [36] 3.856 0.096 0.849 2.568 0.173 0.589 4.721 0.014 1.287
Cross-View-AG+ [35] 3.920 0.095 1.072 2.529 0.176 0.663 4.753 0.013 1.227
LOCATE [29] 3.315 0.115 1.709 2.528 0.187 0.558 4.083 0.026 2.699
INTRA(Ours) 2.663 0.148 2.511 2.095 0.243 1.259 3.081 0.062 4.195

Results on additional datasets. We evaluated the generalization and robust-
ness of the INTRA framework, along with previous works [29, 35, 36] trained in
the ‘Seen’ setting of AGD20K, on the IIT-AFF [48], CAD [60], and UMD [45]
datasets. The experiment was conducted in the ‘Seen’ setting due to overlapping
objects between these datasets and AGD20K. Each GT was processed in the
same way as when evaluating the AGD20K test set. Despite significant domain
gaps across datasets, INTRA outperformed in all metrics on all datasets, demon-
strating its superior generalizability as shown in Tab. 2. Further details of the
experiment can be found in the supplementary material.

Qualitative results. Fig. 4 and Fig. 5 show our superior grounding precision
compared to the baselines, being closer to the GT and finer in granularity. IN-
TRA precisely identifies the exact object part for a given affordance, unlike the
baselines, which ground the same parts regardless of the affordances provided.

User study. Affordance grounding can be ambiguous depending on context
and interpretation, thus relying solely on metrics for evaluation has limita-
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INTRA (Ours)LOCATE GTCross-View-AG Cross-View-AG+

Hold

Ride

Sit on

Cut with

Object Image

Fig. 4: Qualitative results of INTRA (Ours) and baseline models [29,35,36] on ground-
ing affordances of multiple potential interactions on a single object. INTRA precisely
localizes relevant interaction spots for each interaction. For example, with a knife,
it grounds the handle for ‘Hold’ and the blade for ‘Cut with’. For a motorcycle, it
accurately grounds the saddle for ‘Sit on’. Additionally, for ‘Ride’, it grounds both
the handle and saddle, slightly deviating from the GT but still producing reasonable
results, as we usually interacts with handle and saddle to ‘Ride’ a motorcycle.

INTRA (Ours)LOCATE GTCross-View-AG+

Open

Drag

Drink with

Hit

INTRA (Ours)LOCATE GTCross-View-AG+

Ride

Hold

Take photo

Push

Object Image

Seen Unseen

Object Image

Fig. 5: Qualitative results comparison between our approach and other baselines [29,
35,36]. Our approach, INTRA, demonstrates superior precision and detail in grounding
affordances compared to the baselines. For instance, in the example of ‘Drag’, while
baselines either fail to localize the handle or erroneously ground several other parts,
INTRA accurately identifies and grounds the handle of a suitcase with finesse.
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Table 3: The result of user study on validity, finesse, and separability. Users were
asked to score a 5-point scale, and we averaged it for mean opinion score (MOS).

Validity Finesse Separability
Cross-View-AG+ [35] 2.897 3.022 2.732
LOCATE [29] 3.054 2.573 2.651
INTRA (Ours) 3.134 3.112 3.221
Ground Truth 2.905 3.334 3.160

Table 4: Quantitative results of ablation
study on our loss design. We incrementally
added each component of the losses to ex-
amine their impact.

Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

baseline 1.678 0.338 0.891 1.581 0.300 1.100
Linter 1.439 0.334 1.031 1.569 0.292 1.133
Lobj 1.336 0.387 1.218 1.521 0.334 1.042
Linter+Lobj 1.199 0.407 1.239 1.365 0.375 1.209

Table 5: Quantitative results of abla-
tion study on different R. LWordNet,
LWord2V ec are calculated using word sim-
ilarity from WordNet [44], Word2Vec [43],
respectively. LCo−occur. used co-
occurrence probability in GloVe [54].

Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

LWordNet 1.701 0.282 0.710 1.698 0.277 0.937
LCo−occur. 1.519 0.309 0.988 1.639 0.274 1.101
LWord2V ec 1.547 0.302 0.958 1.679 0.270 0.980
Linter(Ours) 1.439 0.334 1.031 1.569 0.292 1.133

tions. Hence, we conducted a user study comparing Cross-View-AG+ [35], LO-
CATE [29], GT, and INTRA (Ours) across three categories: 1) Validity: assessing
heatmap reasonableness, 2) Finesse: measuring heatmap detail, 3) Separability:
determining the accuracy of the heatmap when different affordances are assigned
to the same object. A total of 936 responses were collected for randomly selected
samples from 104 respondents. Results presented in Tab. 3 demonstrate that our
approach outperforms baselines and par on GT based on human perception.

4.3 Ablation Studies

We validate our pipeline design choices and parameters with ablation studies.
This section includes ablation studies on loss design, adoption of LLM, and text
synonym augmentation. Refer to the supplementary for further ablation studies.

Ablation study on loss design. To assess the individual impact of the com-
ponents comprising loss on its overall performance, we analyzed by incrementally
adding components. We started with the most basic element: a normal supervised
contrastive loss. Subsequently, we sequentially added an interaction relationship-
guided loss and an object-variance mitigation loss. The performance outcomes of
these incremental modifications were thoroughly evaluated to understand their
contributions, as represented in the Tab. 4.

Ablation study on adoption of LLM. Adopting LLM to create the rela-
tionship map was essential given the intricate nature of affordances. We exper-
imented with various methods to create the relationship map to validate this
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(b) Feature t-SNE before (left) / after (right) training(a) Overall training scheme

Rep
el

Attract

Fig. 6: An illustration of interaction relationship-guided contrastive learning and t-
SNE [38] visualization of feature distribution. (a) In interaction relationship-guided
contrastive learning, positive interaction pairs attract each other, while others repel.
(b) t-SNE visualization of DINOv2 [51] class token and fexo from INTRA, showing
that features of positive interaction pairs become closer as learning progresses.

choice. We measured the similarity of interaction pairs using WordNet [44] and
Word2Vec [43], or computed co-occurence probability of interaction pairs with
Glove [54]. Based on these measurements, we created an Interaction-relationship
Map and trained the INTRA framework. The results are in the Tab. 5.

Ablation study on text synonym augmentation. We conducted an abla-
tion study on the effectiveness of text synonym augmentation on overall perfor-
mance. We compared performance with and without the module. The module
improved performance by up to 21.93%, particularly in the ‘Unseen’ setting,
enriching models with varied meanings of interactions. Additionally, to test its
effectiveness on novel verb inference, we deliberately omitted the subset ‘Hold’
(24.17% of training data) and then performed inference on ‘Hold’. The module
boosted performance for novel verbs by up to 58.06%. Similar tendencies were
observed for other verbs. Detailed results are available in the supplementary.

5 Discussion

5.1 Effect of Interaction Relationship-guided Contrastive Loss

Our rationale for learning affordance grounding solely with exocentric images
relies on the consistent presence of humans within these images. By repelling
common features of negative pairs, such as human parts, the images effectively
exclude irrelevant elements. Conversely, positive pairs, sharing the desired fea-
ture of the object—specifically, the rim of the object near the face—facilitate
learning by attracting these relevant features (see Fig. 6(a)). To visualize the ef-
fectiveness of our loss in learning interaction-relevant features in similar images,
we examine the feature distributions of ‘Hold’ and ‘Sip’ a wine glass, involving
distinct affordances. Prior to training, these distributions overlap. However, af-
ter training with our loss function, the feature distribution for ‘Hold wine glass’
aligns more closely with ‘Hold baseball bat’ than with ‘Sip wine glass’. This indi-
cates that our loss function effectively discriminates between the characteristics
of different interactions without exhibiting bias towards objects (see Fig. 6(b)).
Detailed explanation is illustrated in the supplementary.
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INTRA (Ours)LOCATE

Stick

INTRA (Ours)

Lie on

LOCATE

Ride

INTRA (Ours)LOCATE

Sit on

INTRA (Ours)LOCATE

Take photoHold

LOCATE INTRA (Ours)

Ride

INTRA (Ours)LOCATE

Write

(a) Qualitative results on images with large domain gap

(b) Qualitative results on novel object (c) Qualitative results on novel interaction

Fig. 7: Qualitative results of feasibility study: (a) Inference on diverse images with
significant domain gap such as pixel arts and paintings. (b) Inference on novel objects
that were not in the training data. (c) Inference on unseen novel interactions. IN-
TRA demonstrates superior grounding accuracy in (a)-(c) compared to LOCATE [29],
showing proper affordance region inference without explicit training.

5.2 Feasibility Study on Generalization Property of INTRA

INTRA excels in affordance grounding on images with large domain gaps, such
as pixel art and paintings, as illustrated in Fig. 7(a). Furthermore, our method
showcases strong generalization abilities for novel objects like a horse and quill,
not present in the training set, as shown in Fig. 7(b). Additionally, despite de-
liberately not being trained on specific interaction classes like ‘Hold’ and ‘Take
photo’ for experiment, INTRA successfully infers their affordances, as depicted
in Fig. 7(c). More results and detailed experimental settings are in the supple-
mentary. One possible explanation for this generalization property is that our
INTRA employs VLM so that diverse domains and novel object can be dealt with
without explicitly tuning for them. Another explanation is INTRA’s contrastive
training that may achieve better representation learning.

6 Conclusion

In this paper, we introduce INTRA, a novel framework reformulating the weakly
supervised affordance grounding with representation learning. We suggest inter-
action relationship-guided contrastive learning, informed by affordance knowl-
edge from LLM. Furthermore, INTRA actively leverages VLM text embedding
in proposed text-conditioned affordance map generation for flexible affordance
grounding, further bolstered by text synonym augmentation for robustness. IN-
TRA achieves state-of-the-art performance across diverse datasets, relying solely
on exocentric images for training, unlike prior methods that also use egocentric
images. Moreover, our method demonstrates generalization feasibility on novel
objects, interactions, and images with significant domain gaps.
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A Additional Experimental Details

A.1 Dataset

Dataset description. AGD20K [36] is an affordance grounding dataset, con-
sisting of 20,061 exocentric images and 3,775 egocentric images that are cat-
egorized based on object and interaction labels. During evaluation, egocentric
images and interaction labels are provided to identify the most relevant regions
of interaction in object images. Note that Ground Truth (GT) masks of AGD20K
were annotated by the interactions between humans and objects in the OPRA
dataset [17].

Seen setting. The ‘Seen’ setting of the AGD20K dataset comprises 36 inter-
action labels and the train and test sets each contains 50 object categories.

Unseen setting. The ‘Unseen’ setting of the AGD20K dataset includes 25
affordance categories. Unlike the ‘Seen’ setting, the object classes in train and
test sets do not overlap so that verification of whether the network can infer
affordances for previously unseen objects is possible. There are 35 object classes
in the train set and 12 object classes in the test set as the following object
categories:

• Train set: apple, badminton racket, baseball, baseball bat, basketball, bench,
book, bottle, bowl, carrot, cell phone, chair, couch, discus, fork, frisbee, ham-
mer, hot dog, javelin, keyboard, knife, microwave, motorcycle, orange, oven,
punching bag, rugby ball, scissors, skateboard, snowboard, suitcase, surfboard,
tennis racket, toothbrush, wine glass

• Test set: axe, banana, bed, bicycle, broccoli, camera, cup, golf clubs, laptop,
refrigerator, skis, soccer ball

* Authors contributed equally. † Corresponding author.
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A.2 Metrics

Unlike segmentation tasks where GT is usually a binary mask, affordance ground-
ing involves mapping the probability of an action on an object, thereby neces-
sitating a probabilistic representation for GT. Following previous works [12,
29, 35–37, 46, 71], we employ Kullback-Leibler divergence (KLD) [9], similarity
(SIM) [42], and normalized scanpath saliency (NSS) [55] as metrics to evalu-
ate our method where KLD quantifies the discrepancy between two probability
distributions, SIM measures the similarity between two distributions, and NSS
evaluates the correspondence between two maps. The details for computing these
metrics are as follows. Firstly, we resize the GT mask MGT and the model’s
predicted attention map Maff to 224× 224 using bilinear interpolation so that
{MGT ,Maff} ∈ R224×224. Then, they are min-max normalized and each ele-
ment is divided by the sum of all elements to obtain M̂GT and M̂aff as follows:

M̂GT = MGT /
∑

MGT , M̂aff = Maff/
∑

Maff . (1)

Lastly, Using M̂GT and M̂aff , KLD and SIM are calculated as following:

KLD(M̂GT ||M̂aff ) =
∑

M̂GT · log

(
M̂GT

M̂aff

)
, (2)

SIM(M̂GT ,M̂aff ) =
∑

min(M̂GT ,M̂aff ). (3)

The following calculations are conducted to compute NSS:

M̃GT = 1(MGT > 0.1), M̃aff =
Maff − µMaff

σMaff

(4)

where 1(·) denotes the indicator function, µMaff
and σMaff

represent the mean
and standard deviation of Maff , respectively. From these, we calculate NSS as
follows:

NSS(M̃GT ,M̃aff ) =
1∑
M̃GT

∑
M̃GT · M̃aff . (5)

A.3 User study

Affordances can be ambiguous due to several factors, including context depen-
dence, perceptual limitations, and subjective interpretations. Therefore, we un-
dertook a comprehensive assessment of our INTRA’s prediction output through
a user study. The study addressed three aspects: ‘validity’, which evaluates fi-
delity of the affordance grounding map, ‘finesse’, which evaluates granularity
and detail of the presented affordance map, and ‘separability’, which evaluates
the model’s ability to appropriately ground the same object in different loca-
tions for various interactions. Eight interactions (‘push’, ‘cut with’, ‘take photo’,
‘sip’, ‘open’, ‘sit on’, ‘pour’, ‘hold’ ) and nine objects (‘motorcycle’, ‘scissors’,
‘camera’, ‘cup’, ‘microwave’, ‘refrigerator’, ‘bicycle’, ‘wine glass’, ‘knife’ ) were



22 Jang & Seo et al.

chosen at random. Respondents assigned scores ranging from 1 to 5 to the affor-
dance maps generated by prior arts (Cross-View-AG+ [35], LOCATE [29]), GT
itself, and our proposed INTRA (Ours). The sequence of results from each model
was randomized for each questionnaire. A total of 104 respondents evaluated the
4 models (including the oracle or GT) across the 9 items.

A.4 Experiment on additional datasets

In addition to AGD20K, our INTRA was evaluated on three additional datasets:
IIT-AFF [48], CAD [60], and UMD [45]. While these datasets were originally
created for affordance segmentation (not specifically for affordance grounding),
they can still provide valuable evaluations and comparisons on how well our IN-
TRA performs affordance grounding in terms of accuracy and finesse compared
to other prior arts on generalized datasets. We made the binary segmentation
mask using a threshold of 0, thus setting the mask value to be 1 if the value in
the mask exceeds 0. Since prior arts in affordance grounding [29,35,36] can not
predict the affordances that were not part of the training data, the affordances
that were not included in the train set were excluded from the dataset for fair
comparisons (advantageous for prior works). With the modified dataset, we as-
sessed the models with a total of 9,797 images from IIT-AFF, 20,016 images from
CAD, and 39,846 images from UMD. Since the majority of objects presented in
these datasets are also included in the AGD20K dataset, we conducted evalua-
tions utilizing a model trained under the ‘Seen’ setting. All remaining evaluation
processes were carried out in the same manner as described in Sec A.2.

B Additional Pipeline Details

B.1 Additional details on network architecture

Design choices for network architecture. Fexo was extracted using the
pre-trained DINOv2-base [51] as an image encoder, with a patch size of 14 and a
feature dimension of 768. For Ftext, we employed the text encoder of ALBEF [32]
based on BERT-base-uncased [16]. In the affordance map generation module, a
transformer encoder architecture stacked with 4-layers and 4-head attention was
utilized. Finally, the 2-layer convolution network in the module projects 768-
channel feature into a single-channel Maff . For the projection layer, a 3-layer
MLP with the output dimension of 128 was adopted to generate zexo, which was
later utilized in contrastive learning.

Rationale for adopting DINO. DINOv2 [51] was selected as the image en-
coder for our INTRA due to its superior performance in extracting low-level
features from images. To visualize the ability of DINOv2, we projected DINOv2
image features onto 3 principal components using 3-dimensional PCA, and then
normalized each dimension from 0 to 1. We then mapped the values to integers
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Fork Refrigerator Motorcycle

Fig. S1: PCA analysis of DINOv2 [51] features on three objects: fork, refrigerator,
motorcycle. As depicted in the figure, the DINOv2 is capable of distinguishing the tip
and handle of the fork; the door of the refrigerator; the handle, saddle, and the wheel
of the motorcycle.

from 0 to 255 to obtain an RGB image. As depicted in Fig. S1, DINOv2 is ca-
pable of distinguishing the object parts: the tip and handle of a fork, the door
of a refrigerator, and the handle, saddle, and the wheel of a motorcycle.

B.2 Additional details on usage of LLM

Text synonym augmentation. In text synonym augmentation, LLM was
used to find synonyms. Examples of queries for finding synonyms can be found
in Tab. S1. To provide the exact context of interaction, examples of interaction
and object pairs were given. Three synonyms were found, and those that over-
lapped with labels of other classes were replaced before usage. The interaction
names used in conditioning were replaced with generated synonyms with a 20%
probability, while the names of classes used in interaction relationship-guided
contrastive learning remained unchanged. Examples of the synonyms used are
depicted in Tab. S2. ChatGPT-4 [1] was adopted as LLM, and no hyperparam-
eters were used.

Query for interaction relationship map. We utilized LLM to determine
whether the given affordance pair acts on the same part of an object, i.e.,
whether the pair is positive or not. LLM was provided with a few examples,
comprising 1.4% of the whole interaction pair, for the task and then asked to
classify the given pair with Chain-of-Thoughts (CoT) [67]. The full query for the
generation of interaction relationship map is provided in Tab. S3. ChatGPT-4 [1]
was adopted as LLM, and no hyperparameter was used.



24 Jang & Seo et al.

Table S1: An example of LLM query and answer to find synonyms for text synonym
augmentation.

Example of LLM query for text synonym augmentation
User Give me three synonyms for each verbs in form of [‘word1’, ‘word2’, ‘word3’].

1. ‘beat’ in context of ‘beat drum’
2. ‘boxing’ in context of ‘boxing punching bag’
3. ‘brush with’ in context of ‘brush with toothbrush’
4. ‘carry’ in context of ‘carry suitcase’
5. ‘catch’ in context of ‘catch baseball’

LLM 1. [‘strike’, ‘hit’, ‘pound’]
2. [‘punching’, ‘sparring’, ‘training’]
3. [‘clean with’, ‘scrub with’, ‘sweep with’]
4. [‘transport’, ‘haul’, ‘convey’]
5. [‘grab’, ‘snag’, ‘snatch’]

Table S3: An example of LLM query and answer to determine whether [‘drink with’,
‘sip’] pair is ‘positive’ or ‘negative’ pair.
Example of LLM query for interaction-relationship map generation
User You should clarify each verb’s relation whether it is positive pair or negative

pair. Here’s some example of the examples of clarification.
ex1) ‘hold’ and ‘carry’ is ‘positive’ pair. Because if we do the given interaction
to the object like suitcase, ski, or snowboard, we interacts with the same part
of the object. The side part of the object for ‘hold’ and ‘carry’.
ex2) ‘hit’ and ‘carry’ is ‘positive’ pair. Because if we do the given interaction
to the object like baseball bat or badminton racket, we interacts with the
same part of the object. The thin part of the object for ‘hit’ and ‘carry’.
ex3) ‘cut with’ and ‘hold’ is ‘negative’ pair. Because if we ‘cut with’ the
object like scissor, or knife, we interacts with the different part of the object.
Sharp part of the object for ‘cut with’ and ‘hold’ for handle or dull part.
ex4) ‘sip’ and ‘hold’ is ‘negative’ pair. Because if we do the given interaction
to the object like cup, bottle, or wine glass, we interacts with the different
part of the object. Rim of the object for ‘sip’, and ‘hold’ for handle or round
part.

Think of 5 objects that can be commonly interacted with. For each ob-
ject, describe the interactions and then list the object parts that should
be interacted with step by step. Use this information to create criteria for
classification based on the given example. Specify the final answer with short
format and it should be one of [positive, negative]. [‘drink with’, ‘sip’] →
[‘positive’, ‘negative’]?
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LLM 1. Cup

– Drink with: When using a cup to drink, the action involves bringing the
rim of the cup to your lips and tilting it to allow the liquid to flow into
your mouth.

– Sip: Sipping from a cup also specifically involves using the rim. The key
distinction is in the amount of liquid and the care with which it’s con-
sumed, but it’s the same part of the cup — the rim — that facilitates the
action.

2. Straw

– Drink with: Drinking with a straw involves placing one end of the straw in
your mouth and the other end in the beverage. The interaction is exclu-
sively with the straw as the medium through which the beverage is drawn
up.

– Sip: Sipping through a straw also involves the same exact use of the straw.
The action might be more gentle or controlled, but it still requires using
the straw to draw the liquid up in the same manner.

3. Glass

– Drink with: Using a glass to drink involves directly interacting with the
rim of the glass. You typically tilt the glass to pour the beverage into your
mouth, engaging directly with the rim.

– Sip: Sipping from a glass, much like drinking, involves delicate interaction
with the rim of the glass. The rim is the point of contact for controlling the
intake of the liquid, even if the sipping is slower or in smaller quantities.

4. Bottle

– Drink with: Drinking from a bottle involves placing your lips around the
opening or the rim of the bottle. The beverage is consumed by tilting
the bottle and allowing the liquid to flow into your mouth through the
opening.

– Sip: Sipping from a bottle uses the same opening. The primary interaction
is still with the rim or the mouth of the bottle, with the main difference
being the amount of liquid consumed and the rate at which it is consumed.

5. Tea Cup

– Drink with: Drinking from a tea cup involves using the rim of the tea cup,
typically held by a handle for ease. The rim is the point of contact with
the mouth, and the tea is consumed by tilting the cup.

– Sip: Sipping from a tea cup also involves the rim. While sipping might
suggest a more refined or controlled action, especially with hot beverages
like tea, it still requires interaction with the same part of the tea cup —
the rim.

In each case, drink with and sip utilize the same part of these objects, con-
firming that they form a positive pair based on their interaction with the same
part of the object.
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Table S2: An example of synonyms generated by LLM for text synonym augmentation.

Examples of synonyms for text synonym augmentation
beat strike, tap, pound
boxing punching, sparring, kicking
brush with clean with, scrub with, sweep with
carry transport, haul, convey
catch grab, snag, snatch
cut slice, chop, carve
cut with slice with, carve with, cut with
drag pull, haul, tow
drink with drink from, quaff from, imbibe from
eat consume, devour, ingest
hit strike, smack, blow
hold grasp, embrace, grip
jump skate, glide, roll
kick kick out, boot, strike
lie on rest on, recline on, lie upon
lift hold, raise, hoist
look out watch out, gaze out, observe
open unzip, unpack, reveal
pack bundle, assemble, prepare
peel peel off, strip off, skin
pick up pick up, collect, gather
pour flow, spill, dispense
push shove, press, thrust
ride cycle, pedal, roll
sip nibble, salute with, taste
sit on sit upon, rest on, perch on
stick pike with, thrust with, jab with
stir mix, whisk, blend
swing swipe, swat, clout
take photo photograph with, capture with, shoot with
talk on speak on, communicate on, converse on
text on message on, compose on, write on
throw toss, fling, hurl
type on key in, enter with, type with
wash rinse, scrub, cleanse
write record with, scrible with, jot with



Interaction Relationship-aware Affordance Grounding (Supp.) 27

C Additional Ablation Studies

C.1 Ablation study on interaction relationship map

The ablation study in the main paper includes quantitative results with var-
ious relationship maps. R generated with LLM (Ours), was substituted with
RWordNet, RCo−Occur., and RWord2V ec. RWordNet was generated by calculat-
ing Wu-Palmer similarities [68] for each interaction pair using WordNet [44].
RCo−Occur. was generated using the co-occurence probability of each interac-
tion pair, which is the inner product of word vectors from the GloVe [54] 840B
model. RWord2V ec contains the similarity of each interaction pair calculated with
Word2Vec [43]. All matrices were converted to binary with threshold of 0.5.

C.2 Ablation study on text encoder

A text encoder was employed to enhance the flexibility to input interactions
and improve robustness against unseen interactions by leveraging VLM’s text
encoder, recognizing the intimate relationship between affordance grounding
and visual information. We assessed the performance of various text embedding
methods by integrating each encoder into our architecture, as detailed in Tab. S4.
It is evident that while random embedding under nearly orthogonal conditions
yields satisfactory performance, it struggles to infer novel interactions. On the
other hand, employing BERT [16] enables the inference of novel interactions,
although the ALBEF [32] text encoder demonstrates superior performance.

Table S4: Quantitative results of ablation study on various text encoders. For the
‘Random’, a 768-dimensional random vector was initialized from a Gaussian distribu-
tion for each interaction. Just as in the INTRA model, only the class token of the
BERT [16] embedding was employed for ‘BERT’. The results indicate that the AL-
BEF [32] text encoder outperforms others, because it embeds visual information in the
text.

Encoder mKLD↓ mSIM↑ mNSS↑

Se
en

Random 1.230 0.392 1.209
BERT [16] 1.286 0.389 1.138
ALBEF [32] 1.199 0.407 1.239

U
ns

ee
n Random 1.520 0.319 1.118

BERT [16] 1.458 0.321 1.190
ALBEF [32] 1.365 0.375 1.209

C.3 Ablation study on the number of projection layers

We conducted ablation experiments on the number of projection layers. The
quantitative results can be found in Tab. S5. The importance of the projection
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layer in contrastive learning is already well-known in prior works [13, 14, 70].
Based on these experimental results, we used three projection layers for our
pipeline.

Table S5: Quantitative results of ablation study on the number of projection layers.
We changed the number of projection layers, trained INTRA and compared the per-
formance. Based on this experimental results, we used three projection layers for our
pipeline.

# of proj. layers mKLD↓ mSIM↑ mNSS↑

Se
en

1 1.380 0.393 1.085
2 1.260 0.401 1.157
3 1.199 0.407 1.239
4 1.223 0.400 1.198

U
ns

ee
n 1 1.680 0.298 0.891

2 1.593 0.320 0.931
3 1.365 0.375 1.209
4 1.497 0.324 1.101

C.4 Ablation study on text synonym augmentation

The detailed quantitative results of ablation study on the text synonym augmen-
tation are provided in Tab. S6 and Tab. S7. As shown in the table, text synonym
augmentation enhances overall performance as well as the performance on novel
verbs. The subsets ‘hold’, ‘swing’ and ‘take photo’ were selected based on their
proportion in the whole dataset to demonstrate that text synonym augmenta-
tion improves performance on novel verbs regardless of their proportion. ‘hold’,
‘swing’ and ‘take photo’ each accounts for 24.17%, 3.82% and 2.45% of the train
set.

Table S6: Quantitative results of ablation study on the text synonym augmenta-
tion. Text synonym augmentation enhances overall performance, especially in ‘Un-
seen’ setting. ‘w/o aug.’ denotes that the inference was done without text synonym
augmentation and ‘w/ aug.’ denotes that the inference was done with text synonym
augmentation.

Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

w/o aug. 1.288 0.386 1.151 1.563 0.322 1.058
w/ aug. 1.199 0.407 1.239 1.365 0.375 1.209
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Table S7: Quantitative results of ablation study on the text synonym augmentation.
Text synonym augmentation improves performance in novel verb inference, irrespective
of their proportion in the train set.

‘hold’ ‘swing’ ‘take photo’
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑ mKLD ↓ mSIM↑ mNSS↑

w/o aug. 1.533 0.317 0.825 1.828 0.212 0.940 0.922 0.472 1.070
w/ aug. 1.344 0.356 1.304 1.789 0.216 1.031 0.648 0.555 1.320

Table S8: Quantitative results of ablation study on the temperature of interaction
relationship-guided contrastive loss. In temperature-scaled contrastive loss, selecting
the appropriate temperature is crucial for achieving optimal model performance. Uti-
lizing this property of contrastive loss, we conducted experiments to find a suitable
value of temperature and trained INTRA with τ = 0.2.

Temp. (τ) mKLD↓ mSIM↑ mNSS↑

Se
en

0.07 1.283 0.396 1.143
0.1 1.263 0.384 1.173
0.2 1.199 0.407 1.239
0.4 1.291 0.382 1.137

U
ns

ee
n 0.07 1.462 0.333 1.126

0.1 1.527 0.336 1.074
0.2 1.365 0.375 1.209
0.4 1.550 0.324 1.025

C.5 Ablation study on hyperparameter

Temperature of interaction relationship-guided contrastive loss. In
temperature-scaled contrastive loss, temperature is one of the important hy-
perparameters that determines the gap between positive and confusing negative
samples. It is also well-known that the performance of the model varies depend-
ing on this value [64]. Specifically, in the affordance grounding task, setting the
gap between hard negatives and positives is crucial due to instances where dif-
ferent parts of an object need to be localized in the same input image. Through
exhaustive experiments, we have found a suitable value of temperature, and some
of the results are presented in Tab. S8.

Ratio of object-variance mitigation loss. The object-variance mitigation
loss aims to mitigate the dissimilarity among object classes within a single in-
teraction class. For example, the ‘hold’ interaction class contains 21 different ob-
jects, such as ‘axe’, ‘badminton racket’, ‘baseball bat’, ‘book’, ‘bottle’, ‘bowl’ and
‘frisbee’, each exhibiting distinct visual characteristics. Through experiments,
we have determined an appropriate ratio for the object-variance mitigation loss.
As depicted in Tab. S9, there was no significant difference in performance, but
λobj = 4 yields the best results for our network.
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Table S9: Quantitative results of ablation study on the ratio of object-variance mitiga-
tion loss. Although this coefficient, λobj , does not have significant effect on performance
of our model, λobj = 4 works best for our network, as shown in the table.

λobj mKLD↓ mSIM↑ mNSS↑

Se
en

1 1.288 0.384 1.160
2 1.249 0.395 1.196
4 1.199 0.407 1.239
8 1.288 0.390 1.155

U
ns

ee
n 1 1.554 0.302 1.083

2 1.629 0.305 0.980
4 1.365 0.375 1.209
8 1.624 0.294 0.939

(a) Affordance grounding on ‘adjust (tie)’ (b) Affordance grounding on ‘carry (chair)’

Fig. S2: Qualitative results of INTRA trained with HICO-DET [11]. (a) ‘adjust (tie)’
accurately grounds the knot of the tie which human usually interacts with tie to ‘adjust’
it. (b) ‘carry (chair)’ precisely highlights the arm rest and back of the chair which are
part of object facilitate for carrying.

D Additional Experiments on Loss Design

Effectiveness of LLM usage. To generate an interaction relationship map, a
comprehensive prior knowledge about interaction is required, as explained pre-
viously. While it is technically feasible to utilize a manually annotated matrix, it
is suboptimal due to its scalability. For a given number of interactions, denoted
as Ninter, the number of pairs that need to be determined grows quadratically
as NinterC2, which follows a growth function of O(N2). For instance, while the
AGD20K dataset features 36 interactions, necessitating determination of ap-
proximately 630 pairs, the HICO-DET [11] dataset entails 6,786 pairs for 117
interactions, and 79,800 pairs for the SWiG-HOI [56, 65] with 400 interactions.
Therefore, the LLM-generated interaction relationship map is essential for the
dataset scalability of the INTRA framework and the consistency of the pair
classification. To demonstrate scalability of our method and the crucial role of
LLM generated interaction-relationship map for dataset scalability, we trained
our INTRA model with HICO-DET dataset. Since egocentric images or GT for
quantitative evaluation are unavailable, we evaluated our trained network on
crawled egocentric images containing interactions not present in AGD20K, but
can be found in HICO-DET. As shown in Fig. S2, our network exhibits scala-
bility for larger datasets and effectively identifies interactions such as ‘adjust’,
grounding the knot of a tie, and ‘carry’, grounding the armrest and back of the
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(a) t-SNE before (left) / after (right) training (Stick, Hold) (b) t-SNE before (left) / after (right) training (Sit on, Push)

(a) t-SNE before (left) / after (right) training (Stick, Hold) (b) t-SNE before (left) / after (right) training (Sit on, Push)

Fig. S3: Feature distribution comparison before and after training was conducted using
t-SNE. For t-SNE before training, the DINOv2 class token was utilized. For t-SNE
after training, fexo, which is simply the weighted sum of DINOv2 features, was used.
As depicted in figure, features of interaction images implying different affordances(i.e.,
‘stick’ and ‘hold’ fork or ‘push’ and ‘sit on’ bicycle) become separate as a result of
interaction relationship-guided contrastive loss, while features of images containing
similar object features still remain close to each other.

chair. If our method was not based on LLM-generated interaction-relationship
map, we had to manually annotate 6,786 interaction pairs to generate the map.

Effectiveness of interaction relationship-guided contrastive loss. As
seen in Fig. S3 (a) before training, DINOv2 features of ‘stick (fork)’, ‘stick
(knife)’, and ‘hold (fork)’ overlap, as ‘stick’ usually comes with ‘hold’. However,
since ‘stick’ and ‘hold’ fork imply different affordances, their features should be
separated in the training. As training progresses, features of ‘stick’ and ‘hold’
forks being well separated, while ‘stick’ forks and ‘stick’ knife exhibit close fea-
ture distribution due to the closeness in their interactions, showing the effec-
tiveness of interaction relationship-guided contrastive learning. Meanwhile, the
object features contained in the images are well preserved, resulting in fexo of
‘stick’ and ‘hold’ fork still remain close to each other. The same tendency is also
depicted in Fig. S3 (b), where ‘sit on’ motorcycle becomes separate from ‘push’
motorcycle after training.
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Table S10: Quantitative results on the new version of AGD20K for our method and
LOCATE [29]. INTRA still outperformed LOCATE on all metrics.

Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

LOCATE [29] 1.277 0.389 1.370 1.410 0.358 1.372
INTRA (Ours) 1.209 0.443 1.450 1.388 0.385 1.384

E Additional Results

E.1 Additional results on extended AGD20K testset

In the main paper, we compared the performance using the existing AGD20K
test set to maintain consistency with the experimental settings of previous works.
However, we also compared the performance with LOCATE [29] using the re-
cently extended AGD20K test set. Tab S10 shows the quantitative comparison
results of our method with LOCATE [29]. The results show that INTRA still
outperformed in all metrics.

E.2 Affordance map visualization on exocentric images

To verify that our proposed method, INTRA, focuses on the interaction-relevant
object features in exocentric images during training, we conducted affordance
map visualization on exocentric images. As illustrated in Fig. S4, even in complex
scenes involving people interacting, it is evident that only the portion of the
object engaged in interaction with people is grounded.

E.3 Visualization of affordance grounding on the same objects with
different interactions

Just as humans can interact with different parts of same objects for distinct in-
teractions, it’s crucial to accurately discern affordance grounding based on these
interactions for further applications in real situations. We achieve this through
interaction-guided contrastive learning and present various results in this section.
As shown in Fig. S5, previous approaches struggle to accurately identify the ob-
ject part that corresponds to the interaction, wheares INTRA (Ours) successfully
grounds the relevant object part. We conducted the affordance grounding pre-
dictions for pairs such as ‘drink with’ and ‘pour’, ‘open’ and ‘pour’, ‘ride’ and ‘sit
on’, and ‘cut with’ and ‘stick’, comparing the performance of previous methods
with INTRA (Ours).

E.4 Additional qualitative results on AGD20K dataset

In Fig. S6, Fig. S7, Fig. S8 and Fig. S9, we present additional qualitative re-
sults and compare them with state-of-the art methods [29, 35, 36]. In both the
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Table S11: Comparison to previous arts on different object scales. Results of * are
taken from [29]. The test set is divided to ‘Big’, ‘Medium’ and ‘Small’ based on the
ratio of the mask to the whole image. INTRA (Ours) outperforms other baselines [18,
29,35,36,40,46,53] significantly in the ‘Small’ subsets, while demonstrating competitive
or superior performance in the ‘Medium’ and ‘Big’ subsets compared to the baselines.

Method Big Medium Small
KLD↓ SIM↑ NSS↑ KLD↓ SIM↑ NSS↑ KLD↓ SIM↑ NSS↑

Se
en

EIL* [40] 1.047 0.461 0.389 1.794 0.284 0.710 3.057 0.123 0.231
SPA* [53] 5.745 0.317 0.222 4.990 0.228 0.440 6.076 0.118 0.297

TS-CAM* [18] 1.039 0.424 0.166 1.814 0.248 0.401 2.652 0.132 0.352
Hotspots* [46] 0.986 0.448 0.408 1.738 0.265 0.672 2.587 0.149 0.683

Cross-view-AG* [36] 0.766 0.533 0.652 1.485 0.322 1.040 2.373 0.175 0.927
Cross-view-AG+* [35] 0.787 0.521 0.660 1.481 0.314 1.089 2.381 0.167 0.959

LOCATE* [29] 0.676 0.580 0.706 1.178 0.390 1.316 2.029 0.216 1.349
INTRA (Ours) 0.695 0.579 0.782 1.193 0.394 1.300 1.826 0.239 1.587

U
ns

ee
n

EIL* [40] 1.199 0.393 0.271 1.906 0.246 0.482 3.082 0.113 0.116
SPA* [53] 8.299 0.259 0.254 6.938 0.186 0.333 7.784 0.095 0.144

TS-CAM* [18] 1.238 0.351 0.072 1.970 0.208 0.236 2.766 0.113 0.124
Hotspots* [46] 1.015 0.425 0.548 1.872 0.242 0.605 2.693 0.134 0.544

Cross-view-AG* [36] 0.884 0.500 0.728 1.595 0.303 0.945 2.558 0.147 0.692
Cross-view-AG+* [35] 0.867 0.485 0.776 1.658 0.279 0.988 2.630 0.133 0.754

LOCATE* [29] 0.571 0.629 0.956 1.302 0.373 1.257 2.223 0.189 1.071
INTRA (Ours) 0.662 0.573 0.955 1.288 0.378 1.249 2.032 0.230 1.299

‘Seen’ and ‘Unseen’ setting, baselines struggles to accurately ground affordance
when multiple objects are present in the images. Additionally, their heatmaps
are also coarse and do not seem to handle occlusion that occurs in exocentric
images. In contrast, even in complex scenes, INTRA (Ours) successfully grounds
affordances.

E.5 Visualization of feasibility study on generalization property of
INTRA

Domain gap. Our framework, INTRA, demonstrates excellent grounding re-
sults when there is a significant domain gap between training and inference.
We conducted inference using egocentric images from various domains to as-
sess the robustness against this gap. We obtained synthetic images of objects
present in the train set from the internet, including pen illustrations, pixel art,
or object images from instructions. Compared to other baseline model [29], our
model accurately grounds affordances in those images. Especially, we can see in
a picture of drum and chair of Fig. S10 that our model successfully identifies
all interaction-relevant regions of objects. Moreover, in images of pen-illustrated
chair and camera, our model generates finer heatmaps.

Novel object. To analyze the generalization property of the affordance ground-
ing, we conducted experiments on novel objects, which were not in the train set.
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We tested our model and baseline [29] on novel objects that share common
properties with objects in the train set, but have never been seen before. IN-
TRA (Ours) successfully grounds the most interaction-relevant object parts, as
demonstrated in examples of ‘wallet’ and ‘door’ in Fig. S11.

Novel interaction. With VLM text embedding, INTRA (Ours) successfully
predicts affordance maps for novel interactions, as illustrated in our main paper.
We designed and conducted experiments to analyze the generalization ability
adopted by the VLM text encoder. During training, we excluded specific in-
teraction classes and inferred affordance grounding on these excluded interac-
tion classes to assess the grounding performance of the unlearned interactions.
Fig. S12 is qualitative results of affordance grounding when the ‘hold’, ‘pour’,
and ‘kick’ classes are unseen during the training.

Novel object and novel interaction. We conducted experiments to assess
whether our model can infer affordance even in cases where both the interaction
and object are novel. Since the baseline model can only infer predetermined
interaction types, for comparison, we asked LLM to find the closest interaction of
the novel interaction and inferred affordance grounding on the closest interaction
in the baseline model. Specifically, ‘brew-pour’, ‘wipe-brush with’, ‘pull-hold’,
‘drive-ride’ were selected to substitute novel interaction in the baseline model.
In Fig. S13, it is evident that our INTRA can accurately ground affordance even
when both the interaction and object are unseen, and the novel objects have
many tractable parts. For instance, Ours grounded all relevant parts of ‘Drive’
in photos of car interior, whereas the baseline could not. Also, Ours accurately
grounded all relevant parts that can be pulled in a wine opener and wagon.

Comparison on different scales. To investigate how varying affordance re-
gion scales impact the model, we follow [29, 35, 36], dividing the test set into
three subsets: ‘Big’, ‘Medium’ and ‘Small’. These subsets are determined by
the ratio of the mask, with thresholds set at more than 0.1, between 0.03 and
0.1, and less than 0.03, respectively. INTRA (Ours) outperforms other base-
lines [18,29,35,36,40,46,53] significantly in the ‘Small’ subset, demonstrating its
ability to generate finer heatmaps. Additionally, performance in the ‘Medium’
and ‘Big’ subsets is either comparable to or surpasses the baselines.

F Limitation

While INTRA produces good grounding results even with novel interactions or
objects, it finds it challenging to learn interactions in exocentric images where
there is no contact between the object and the human. Although such interac-
tions do not exist in AGD20K, it has been observed that classes without direct
contact, such as ‘watch (clock)’ or ‘direct (airplane),’ are difficult to learn when
training with the HOI datasets [11,24,56,65]. Thus, inferrring instructions that
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contain implicit meanings can be challenging. For example, grounding is pos-
sible for ‘turn on (air-conditioner),’ but not for abstract instructions like ‘I’m
cold.’ Additionally, grounding may fail when the points of interaction are visu-
ally similar. For instance, when operating a microwave, it is difficult to identify
the button with the affordance for ‘heat’ among multiple buttons.
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Fig. S4: Affordance map visualization results on exocentric images. The model pre-
cisely localizes to the interacting part of the object rather than the person overall.
Accurately pinpointing the part of the object involved in interaction is important, es-
pecially when occlusion occurs. Our model handles this well, as shown in instances
such as ‘hit’, ‘look out’, ‘open’, ‘push’, ‘ride’, and ‘talk on’.
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Fig. S5: Visualization of affordance grounding on the same objects with different in-
teractions compared to results of previous arts [29, 35, 36]. We performed affordance
grounding for ‘wine glass’, ‘bottle’, ‘bicycle’, and ‘knife’, where two interactions require
different parts of objects to be grounded. The model grounded the rim of ’wine glass’
for ‘drink with’ and the handle for ‘pour’. For ‘bottle’ and ‘bicycle’, INTRA (Ours)
precisely identifies the object parts corresponding to the given interactions. Particu-
larly, for ‘knife’, we observe that INTRA (Ours) grounds the blade for ‘cut with’ and
the tip of the knife for ‘stick’.



38 Jang & Seo et al.

INTRA (Ours)LOCATE GTCross-View-AG+Object Image

Seen

Cut with

Cut with

Drink with

Open

Drink with

Stick

Take Photo

Ride

Fig. S6: Additional qualitative results comparison between INTRA (Ours) and other
baselines [29, 35, 36] on ‘Seen’ testset of AGD20K. INTRA (Ours) grounds affordance
accurately when the images are clustered with many objects. For example, grounding
results of ‘cut with’ and ‘stick’ accurately mark the blade of scissors, knife and the tip
of fork. Unlike other baselines that tend to generate coarse heatmaps, our heatmaps
are fine and localize only the relevant parts of the interactions.
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Fig. S7: Additional qualitative results comparison between INTRA (Ours) and other
baselines [29, 35, 36] on ‘Seen’ testset of AGD20K. INTRA (Ours) grounds affordance
accurately and generates finer heatmaps. For example, grounding results of ‘drag’ and
‘open’ accurately mark the handle of suitcase, and the door handle of the refrigerator.
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Fig. S8: Additional qualitative results comparison between INTRA (Ours) and other
baselines [29,35,36] on ‘Unseen’ testset of AGD20K. Qualitative comparison of ground-
ing results in ‘Unseen’ setting also shows that accuracy of our grounding results outper-
forms others. Especially, grounding result of ‘sit on’ not only localizes bicycle saddle,
but also the wooden chair that is partially shown in the image.
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Fig. S9: Additional qualitative results comparsion between INTRA (Ours) and other
baselines [29,35,36] on ‘Unseen’ testset of AGD20K. Qualitative comparison of ground-
ing results in ‘Unseen’ setting also shows that accuracy of our grounding results out-
performs others. Especially, the grounding result of ‘hit’ not only localizes the handle of
the axe, but also includes the blade of the axe, which can be interpreted as an integral
part of the object incorporated with ‘hit’.
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Fig. S10: Additional qualitative results comparison between INTRA (Ours) and other
baseline [29] on affordance grounding in object images with significant domain gap. IN-
TRA (Ours) accurately and finely grounds affordances in pen-illustrated chairs, cam-
eras and pixel-art wine glasses while other baseline can’t. Also in case of ‘beat (drum)’,
while baseline model is inaccurately grounding the side of the drum, our model grounds
center, top side of drum accurately. In case of drum set, our model grounded all drums
that we can ‘beat’ while the baseline grounded on the side of base drum. The examples
of ‘hold (broomstick)’ and ‘cut with (knife)’ shows that although there were significant
domain gap between training images, INTRA (Ours) grounds the parts that are incor-
porated by interactions accurately.
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Fig. S11: Additional qualitative results comparison between INTRA (Ours) and other
baseline [29] on affordance grounding in novel objects. Our INTRA, as seen in examples
like ‘open (wallet)’ or ‘push (door)’, accurately grounds more important interaction
points such as center of doors or zipper of the wallet. Also, for example of ‘hold (shovel)’,
‘hold (iron)’ and ‘push (shopping cart)’, it accurately captures the exact interaction
points which are handle of the object. Although the train set does not contain images
of weights or iron, INTRA (Ours) successfully grounds the interaction points.
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‘Pour’

‘Hold’

‘Kick’

Fig. S12: Additional Qualitative results of affordance grounding when interactions are
unseen. The affordance grounding output alongside each interaction demonstrates the
inference results for interactions that were not part of the training data. For example,
in case of ‘pour’, all the exocentric images related to ‘pour’ were excluded during
training, yet our model still exhibits fine grounding quality when inferring ‘pour’ on
‘bottle’, ‘cup’, and ‘wine glass’.
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Fig. S13: Additional qualitative results comparison between INTRA (Ours) and other
baseline [29] on affordance grounding when both the interaction and object are unseen
during the training. Our approach accurately grounds affordances even when objects
have many tractable parts, as observed in cases such as ‘coffee machine’, ‘wine opener’
or ‘car interior’. For instance, in the case of ‘brew’, INTRA (Ours) captures the handle
of the portafilter, while LOCATE [29] focuses on the bean container. Similarly, for the
example of ‘wipe’, INTRA grounds on the flat part of the desk, wheares LOCATE
focuses on the desk leg.
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